

Unified scaling relation for rising flux tubes in solar-like stars

Y. Fournier, R. Arlt, U. Ziegler and K. G. Strassmeier

Leibniz Institute for Astrophysics

Motivations

Numerical experiments

- Numerical Setup
- Numerical Tool

Results

- Scaling behavior
- Extension to 3D
- A universal relation for the rising time

Application to BL-Dynamo

Discussion and Conclusion

Figure : Final stage of the rise of an emerging magnetic flux tube in a solar-like interior.

Studying the dynamics of magnetic flux tube in solar-like interiors

- ► To constrain the BL-Dynamo
- To explain formation of active regions
- To explain active latitudes and title angles

\overline{P} Compressible simulations: the setup

Features

- Fully compressible MHD equations
- Spherical geometry in 2D and 3D
- Rotation

Initial Conditions

 Entropic perturbation of various azimuthal wavenumbers (called m)

Figure : Description of the initial condition of the setup (3D case). Fournier et al. 2015 (in prep.)

AIP Compressible simulations: the tools

The NIRVANA code.

- Spherical geometry
- Parallelized (good scaling behavior)
- Adaptive Mesh Refinement

Figure : Non homogeneous block structure distribution around the magnetic flux tube with 2-levels of refinement. Each block contains 4 cells (in 2D).

Compressible simulations: the standard simulation

Figure : Magnetic contours of the flux tube at different times, showing the path taken by the flux tube while tising.

Two forces are mainly acting on the flux tube:

Buoyant force: controlled by $\beta = P/P_{\rm m}$

2 Coriolis force: controlled by $\mathcal{M}_{\rm rot.} = \varpi \Omega_0/cs$

AIP Compressible simulations: the difficulties

Compressibility \rightarrow resolving sound waves.

- Advantages: general case, permits strong entropic deviations, enables helioseismologic studies, this is the **first specific** study.
- Disadvantages:
 - much longer simulations (short time step to catch fast sound waves)
 - impossibility to use a background reference state
 - \blacktriangleright limited in resolving the entropic signature of the flux tube $\rightarrow \beta$ parameter is much too low

solar $\beta = 10^5 \gg \text{simulation } \beta = 100$ three orders of magnitude $\neq !!$ How can we be sure that the simulations are in the solar regime? **Does the simulation scale?**

 $\overline{\text{AIP}}$ Validation of the setup: 2D experiment

If a strongly buoyant flux tube in a fast rotating star shows the same characteristics as a weakly buoyant flux tube in a slowly rotating star, then our setup scales.

Y. Fournier

As shown by Schüssler and Solanki (1992) what ever pair of $(\beta, \mathcal{M}_{rot.})$ which gives a constant Ro_m^{\star} the results will be the same. Ro_m^{\star} controls the regime of the rise.

$$Ro_{\mathrm{m}}^{\star} = rac{v_{\mathrm{A}}}{arpi\Omega_{0}} \propto Ro_{\mathrm{m}}$$

Hence, if $\mathcal{M}_{\rm rot.}$ is chosen accordingly; a simulation with low β is in the correct regime.

Fan (2008) has shown that 2D and 3D rises of magnetic flux tubes are very different.

- 2D (axisymmetric): the conservation of angular momentum implies a deceleration which results in a latitudinal deflection.
 - \rightarrow high latitude of emergence.
- ► 3D (non-axisymmetric): The additional degree of freedom allows a redistribution of angular momentum.
 - \rightarrow low latitude of emergence, and tilt angles.

Questions

- What about the scaling behavior of the 3D rise?
- Does the scaling parameter hold?

Figure : Each point represents a simulation in the (β , $M_{rot.}$) parameter space. It is not the best plot ever but still better than a long boring list.

Parameter space

Scaling relation for rising flux tubes

Figure : Each point represents a simulation in the (β , $M_{rot.}$) parameter space. It is not the best plot ever but still better than a long boring list.

Parameter space

Scaling relation for rising flux tubes

Parameter study - 38 simulations

Figure : Each point represents a simulation in the $(\beta, M_{rot.})$ parameter space. It is not the best plot ever but still better than a long boring list.

Parameter space

► The darker points are simulations with a constant Ro^{*}_m.

Y. Fournier

Parameter study - 38 simulations

Figure : Each point represents a simulation in the $(\beta, M_{rot.})$ parameter space. It is not the best plot ever but still better than a long boring list.

Parameter space

► The darker points are simulations with a constant Ro^{*}_m.

Y. Fournier

P Parameter study - 38 simulations

Figure : Each point represents a simulation in the $(\beta, M_{rot.})$ parameter space. It is not the best plot ever but still better than a long boring list.

Parameter space

- The darker points are simulations with a constant Ro^{*}_m.
- No scaling for a constant Ro^{*}_m; the properties of the flux do not scale.

Y. Fournier

P Parameter study - 38 simulations

Figure : Each point represents a simulation in the (β , $M_{rot.}$) parameter space. It is not the best plot ever but still better than a long boring list.

Parameter space

- ► The darker points are simulations with a constant Ro^{*}_m.
- No scaling for a constant Ro^{*}_m; the properties of the flux do not scale.
- Does the setup scale at all?

The setup scales

As a result of the scaling behavior of the setup we can reduce the relation to a 1D-function.

The setup scales

- As a result of the scaling behavior of the setup we can reduce the relation to a 1D-function.
- one independent variable:

$$\left(\frac{1}{\beta}\right)^{2/5} \frac{1}{\mathcal{M}_{\rm rot.}}$$

19/1

Y. Fournier

Y. Fournier

Scaling relation for rising flux tubes

$\overrightarrow{\text{AIP}}$ What is the difference between 2D and 3D?

- ▶ Not the geometry, but the azimuthal wavenumber (m) of the perturbation.
 - 2D: m=0 \rightarrow axisymmetric rise.
 - 3D: m>0 \rightarrow non-axisymmetric rise.

2 1910 101

AIP What is the difference between 2D and 3D?

- Not the geometry, but the azimuthal wavenumber (m) of the perturbation.
 - 2D: m=0 \rightarrow axisymmetric rise.
 - 3D: m>0 \rightarrow non-axisymmetric rise.
- ► 3 series varying azimuthal wavenumber (m)

AIP Defining a *unified* scaling parameter.

In 3D the properties of the rise of the magnetic flux tube do not scale with the magnetic Rossby numbers, so we had to define a more general scaling parameter. We call it Γ_α:

$$\Gamma_{\alpha} = \frac{\left(v_{\rm A}\right)^{\alpha} \left(c_s\right)^{1-\alpha}}{\varpi \Omega_0}$$

Where α depends on the azimuthal wavenumber (m) of the perturbation.

AIP Defining a *unified* scaling parameter.

In 3D the properties of the rise of the magnetic flux tube do not scale with the magnetic Rossby numbers, so we had to define a more general scaling parameter. We call it Γ_α:

$$\Gamma_{\alpha} = \frac{\left(v_{\rm A}\right)^{\alpha} \left(c_s\right)^{1-\alpha}}{\varpi \Omega_0}$$

- Where α depends on the azimuthal wavenumber (m) of the perturbation.
- In the case of m=0 $\rightarrow \alpha$ =1 :

$$\Gamma_1 = \frac{v_{\rm A}}{\varpi \Omega_0} = Ro_{\rm m}^{\star}$$

$\widehat{\text{AIP}}$ There is no difference between 2D and 3D.

- Not the geometry, but the azimuthal wavenumber (m) of the perturbation.
 - 2D: m=0 \rightarrow axisymmetric rise.
 - 3D: $m > 0 \rightarrow$ non-axisymmetric rise.

Three series	One scaling	Three α :
► m = 0		▶ 1
► m = 4	$\Gamma_{-} = \frac{\left(v_{\rm A}\right)^{\alpha} \left(c_s\right)^{1-\alpha}}{\left(c_s\right)^{1-\alpha}}$	▶ 0.92
► m = 8	π^{α} $\varpi\Omega_0$	▶ 0.85

 $\blacktriangleright \ \alpha$ is a function of the azimuthal wavenumber of the perturbation

AIP What do we learn about such a relation?

- The regime of the rise is driven by Γ_{α}
- ► We learn that it is possible to compare our simulations with stellar objects.
 - Even though the numerical parameter space is far away from the realistic one, Γ_α drives the regime, hence a simulation with the solar Γ_α can be compared with the sun.

AIP What do we learn about such a relation?

- The regime of the rise is driven by Γ_{α}
- ► We learn that it is possible to compare our simulations with stellar objects.
 - Even though the numerical parameter space is far away from the realistic one, Γ_α drives the regime, hence a simulation with the solar Γ_α can be compared with the sun.
- And what about the dynamo?

P Application: the Babcock-Leighton dynamo

Figure : A sketch of the Babcock-Leighton dynamo mechanism. Picture from Charbonneau (2010).

- The BL-Dynamo needs a mechanism to transport magnetic flux from the bottom of the CZ to the surface. The traditional mechanism is magnetic buoyancy under the form of flux tubes.
- Usually people consider the rise to be instantaneous. Is it really?
- From our simulations we can constrain the rise.

IP Evolution of the relative rising time with Γ_{α}

• For an azimuthal wavenumber m = 8

 $\tilde{\tau}_{\rm rise} \propto (\Gamma_{0.85})^{-1.17}$

Future work: implementing a delayed BL-dynamo (testing phase)

- In a similar manner than Jouve et al. (2010) we are introduced a delay in the α-effect.
- ▶ From our results we can constrain the delay (for m=8):

$$\tau_{\rm B} = \left(\frac{\tau_0}{\tau_{\rm diff}}\right) \sin(\theta) \left(\mathcal{M}_{\rm rot.}\right)^{0.17} \left(\frac{AB_{\phi}}{B_{\rm Eq}}\right)^{-1}$$

- We want to study the possible limit of the BL-Dynamo. Fast rotating stars has:
 - shorter cycles
 - longer rising time

Future work: implementing a delayed BL-dynamo (testing phase)

- In a similar manner than Jouve et al. (2010) we are introduced a delay in the α-effect.
- ▶ From our results we can constrain the delay (for m=8):

$$\tau_{\rm B} = \left(\frac{\tau_0}{\tau_{\rm diff}}\right) \sin(\theta) \left(\mathcal{M}_{\rm rot.}\right)^{0.17} \left(\frac{AB_{\phi}}{B_{\rm Eq}}\right)^{-1}$$

- We want to study the possible limit of the BL-Dynamo. Fast rotating stars has:
 - shorter cycles
 - Ionger rising time
- What would happen if the rising time becomes of the same order of magnitude than the cycle?

AIP Discussion and Conclusion

- ► We conduct numerical experiments of compressible magnetic flux tubes, which were able to reproduce results found in the literature.
- ▶ In 3D, the setup scales in a different manner than in 2D.
- We designed a general scaling parameter unifying former and current results:

$$\Gamma_{\alpha} = \frac{\left(v_{\rm A}\right)^{\alpha} \left(c_s\right)^{1-\alpha}}{\varpi \Omega_0}$$

- The setup scales. Therefore, even though the numerical domain is different from the realistic one, the simulations are in the solar regime.
- ► We could compute the rising time scale needed to constrain the BL-dynamo.
- We include this rising time as a delay in the α effect for a BL-dynamo.