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Motivations

Figure : Final stage of the rise of an emerging
magnetic flux tube in a solar-like interior.

Studying the dynamics of magnetic
flux tube in solar-like interiors

I To constrain the BL-Dynamo
I To explain formation of active

regions
I To explain active latitudes and title

angles
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Compressible simulations: the setup

Features
I Fully compressible MHD

equations
I Spherical geometry in 2D

and 3D
I Rotation

Initial Conditions
I Entropic perturbation of

various azimuthal
wavenumbers (called m) Figure : Description of the initial condition of the setup (3D

case). Fournier et al. 2015 (in prep.)
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Compressible simulations: the tools

The NIRVANA code.

I Spherical geometry
I Parallelized (good scaling

behavior)
I Adaptive Mesh Refinement

Figure : Non homogeneous block structure distribution
around the magnetic flux tube with 2-levels of
refinement. Each block contains 4 cells (in 2D).
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Compressible simulations: the standard
simulation

Figure : Magnetic contours of the flux tube at different
times, showing the path taken by the flux tube while
rising.

Two forces are mainly acting
on the flux tube:

1 Buoyant force: controlled
by β = P/Pm

2 Coriolis force: controlled by
Mrot. = $Ω0/cs
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Compressible simulations: the difficulties

Compressibility → resolving sound waves.

I Advantages: general case, permits strong entropic deviations,
enables helioseismologic studies, this is the first specific study.

I Disadvantages:
I much longer simulations (short time step to catch fast sound

waves)
I impossibility to use a background reference state
I limited in resolving the entropic signature of the flux tube
→ β parameter is much too low

solar β = 105 � simulation β = 100
three orders of magnitude 6=!!

How can we be sure that the
simulations are in the solar
regime?
Does the simulation scale?
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Validation of the setup: 2D experiment

If a strongly buoyant flux tube in a fast rotating star shows the same
characteristics as a weakly buoyant flux tube in a slowly rotating star,
then our setup scales.

As shown by Schüssler and Solanki
(1992) what ever pair of (β,Mrot.)
which gives a constant Ro?m the
results will be the same. Ro?m
controls the regime of the rise.

Ro?m =
vA
$Ω0

∝ Rom

Hence, ifMrot. is chosen
accordingly; a simulation with low β
is in the correct regime.
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Extension to 3D
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Extension to 3D

Fan (2008) has shown that 2D and 3D rises of magnetic flux tubes are
very different.

I 2D (axisymmetric): the conservation of angular momentum implies
a deceleration which results in a latitudinal deflection.
→ high latitude of emergence.

I 3D (non-axisymmetric): The additional degree of freedom allows a
redistribution of angular momentum.
→ low latitude of emergence, and tilt angles.

Questions

I What about the scaling behavior of the 3D rise?
I Does the scaling parameter hold?
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Parameter study - 38 simulations

Figure : Each point represents a simulation in the (β, Mrot.)
parameter space. It is not the best plot ever but still better than a
long boring list.

Parameter space

I The darker points are
simulations with a
constant Ro?m.

I No scaling for a
constant Ro?m; the
properties of the flux
do not scale.

I Does the setup scale
at all?
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Looking for a scaling. (τ̃rise, β, Mrot.)
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Looking for a scaling. (τrise, β, Mrot.)
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Looking for a scaling. (τrise, β, Mrot.)
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Reduction to 1D-function

The setup scales

I As a result of the
scaling behavior of the
setup we can reduce the
relation to a
1D-function.

I one independent
variable:(

1

β

)2/5
1

Mrot.
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What is the difference between 2D and 3D?

I Not the geometry, but the azimuthal wavenumber (m) of the
perturbation.

I 2D: m=0 → axisymmetric rise.
I 3D: m>0 → non-axisymmetric rise.

I 3 series varying azimuthal wavenumber (m)

Series Scaling parameter

m=0 Ro?m

m=4 (vA)0.92(cs)
0.08

$Ω0

m=8 (vA)0.85(cs)
0.15

$Ω0
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Defining a unified scaling parameter.

I In 3D the properties of the rise of the magnetic flux tube do
not scale with the magnetic Rossby numbers, so we had to
define a more general scaling parameter. We call it Γα:

Γα =
(vA)α (cs)

1−α

$Ω0

I Where α depends on the azimuthal wavenumber (m) of the
perturbation.

I In the case of m=0 → α=1 :

Γ1 =
vA

$Ω0
= Ro?m
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There is no difference between 2D and 3D.

I Not the geometry, but the azimuthal wavenumber (m) of the
perturbation.

I 2D: m=0 → axisymmetric rise.
I 3D: m>0 → non-axisymmetric rise.

Three series

I m = 0
I m = 4
I m = 8

One scaling

Γα =
(vA)

α
(cs)

1−α

$Ω0

Three α:

I 1
I 0.92
I 0.85

I α is a function of the azimuthal wavenumber of the perturbation
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What do we learn about such a relation?

I The regime of the rise is driven by Γα

I We learn that it is possible to compare our
simulations with stellar objects.

I Even though the numerical parameter space is far
away from the realistic one, Γα drives the regime,
hence a simulation with the solar Γα can be
compared with the sun.

I And what about the dynamo?
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Application: the Babcock-Leighton dynamo

Figure : A sketch of the Babcock-Leighton
dynamo mechanism. Picture from
Charbonneau (2010).

I The BL-Dynamo needs a mechanism
to transport magnetic flux from the
bottom of the CZ to the surface. The
traditional mechanism is magnetic
buoyancy under the form of flux tubes.

I Usually people consider the rise to be
instantaneous. Is it really?

I From our simulations we can constrain
the rise.
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Evolution of the relative rising time with Γα

I For an azimuthal wavenumber m = 8

τ̃rise ∝ (Γ0.85)−1.17
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Future work: implementing a delayed
BL-dynamo (testing phase)

I In a similar manner than Jouve et al. (2010) we are
introduced a delay in the α-effect.

I From our results we can constrain the delay (for m=8):

τB =

(
τ0

τdiff

)
sin(θ) (Mrot.)

0.17

(
ABφ
BEq

)−1

I We want to study the possible limit of the BL-Dynamo.
Fast rotating stars has:

I shorter cycles
I longer rising time

I What would happen if the rising time becomes of the same
order of magnitude than the cycle?
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Discussion and Conclusion
I We conduct numerical experiments of compressible magnetic flux

tubes, which were able to reproduce results found in the literature.
I In 3D, the setup scales in a different manner than in 2D.
I We designed a general scaling parameter unifying former and

current results:
Γα =

(vA)
α

(cs)
1−α

$Ω0

I The setup scales. Therefore, even though the numerical domain is
different from the realistic one, the simulations are in the solar
regime.

I We could compute the rising time scale needed to constrain the
BL-dynamo.

I We include this rising time as a delay in the α effect for a
BL-dynamo.
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