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AP Motivations

Studying the dynamics of magnetic
flux tube in solar-like interiors

» To constrain the BL-Dynamo

» To explain formation of active
regions

» To explain active latitudes and title
angles

Figure : Final stage of the rise of an emerging
magnetic flux tube in a solar-like interior.
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Alr - Compressible simulations: the setup

Features

» Fully compressible MHD
equations

» Spherical geometry in 2D
and 3D

» Rotation

Initial Conditions

» Entropic perturbation of

various azimuthal
Figure : Description of the initial condition of the setup (3D
wavenumbers (called m) case). Fournier et al. 2015 (in prep.)
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Alr - Compressible simulations: the tools

The NIRVANA code.

» Spherical geometry

» Parallelized (good scaling
behavior)

» Adaptive Mesh Refinement

Figure : Non homogeneous block structure distribution
around the magnetic flux tube with 2-levels of
refinement. Each block contains 4 cells (in 2D).
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g Compressible simulations: the standard
AP simulation

Two forces are mainly acting
on the flux tube:

Buoyant force: controlled
by 8 = P/Pn

Coriolis force: controlled by
Mot = wQp/cs

/ 1.00
olar radivs

07 Depthin®

Figure : Magnetic contours of the flux tube at different
times, showing the path taken by the flux tube while
rising.
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Alr - Compressible simulations: the difficulties

Compressibility — resolving sound waves.

> Advantages: general case, permits strong entropic deviations,
enables helioseismologic studies, this is the first specific study.

> Disadvantages:
» much longer simulations (short time step to catch fast sound
waves)
» impossibility to use a background reference state
» limited in resolving the entropic signature of the flux tube
— [3 parameter is much too low

How can we be sure that the
solar 8 = 10° >> simulation 3 = 100 simulations are in the solar
three orders of magnitude #!! regime?

Does the simulation scale?
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Al Validation of the setup: 2D experiment

If a strongly buoyant flux tube in a fast rotating star shows the same
characteristics as a weakly buoyant flux tube in a slowly rotating star,
then our setup scales.

As shown by Schiissler and Solanki
(1992) what ever pair of (3, M;ot.)
which gives a constant Roj}, the
results will be the same. Ro},
controls the regime of the rise.

VA
’WQ()

Ro: =

m

x Rom

Hence, if M. is chosen
© Slow rotation, weak flux tube |\ accordmgly; a simulation with low ﬁ
O Fast rotation, strong flux tube - . -

troaton g ke |, " 10 is in the correct regime.

ar radius

07 Depth in o
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Alr Extension to 3D

B stable B>0

Unstable B<o |

0.0 Prot. 0.4 Prot. 0.8 Prot. 1.2 Prot. 1.6 Prot.
Time
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Alr Extension to 3D

Fan (2008) has shown that 2D and 3D rises of magnetic flux tubes are
very different.

> 2D (axisymmetric): the conservation of angular momentum implies
a deceleration which results in a latitudinal deflection.
— high latitude of emergence.

> 3D (non-axisymmetric): The additional degree of freedom allows a
redistribution of angular momentum.
— low latitude of emergence, and tilt angles.

» What about the scaling behavior of the 3D rise?
» Does the scaling parameter hold?
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Alr - Parameter study - 38 simulations

Parameter space
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Figure : Each point represents a simulation in the (8, Myot.)
parameter space. It is not the best plot ever but still better than a
long boring list.
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Alr - Parameter study - 38 simulations

Parameter space
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Alr - Parameter study - 38 simulations
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Alr - Parameter study - 38 simulations
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a1l Looking for a scaling. (Tise, 55 Miot.)
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AP Looking for a scaling. (Tiige, 85, Moot.)
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AP Looking for a scaling. (Tiige, 85, Moot.)
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AP Looking for a scaling. (Tyige, 85, Miot.)
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AlP  Reduction to 1D-function

log(Tiise)

0.0 0.5
—log(B*° Mye.)

1.0

The setup scales

> As a result of the
scaling behavior of the
setup we can reduce the
relation to a
1D-function.

Y. Fournier

Scaling relation for rising flux tubes



a

AlP  Reduction to 1D-function

The setup scales

X . | > As a result of the

° scaling behavior of the
Y setup we can reduce the
° relation to a
° ] 1D-function.

log(Tiise)

L] -
° » one independent
variable:

=T ~05 0.0 0.5 10 15 1 2/5 1
- l‘)g(ﬁz/sx"[m(.) B Mrot
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‘AlP - What is the difference between 2D and 3D?
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‘AlP - What is the difference between 2D and 3D?

» Not the geometry, but the azimuthal wavenumber (m) of the
perturbation.
» 2D: m=0 — axisymmetric rise.
» 3D: m>0 — non-axisymmetric rise.
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‘AlP - What is the difference between 2D and 3D?

» Not the geometry, but the azimuthal wavenumber (m) of the
perturbation.

» 2D: m=0 — axisymmetric rise.
» 3D: m>0 — non-axisymmetric rise.

» 3 series varying azimuthal wavenumber (m)

Series Scaling parameter
m=0 Roy,

- (U )0.92(65)0.08
m=4 o

o (U )0'85(65)0'15
m=38 e
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Alp Defining a unified scaling parameter.

> In 3D the properties of the rise of the magnetic flux tube do
not scale with the magnetic Rossby numbers, so we had to
define a more general scaling parameter. We call it I',,:

(va)® ()"

T, =
¢ w g

» Where « depends on the azimuthal wavenumber (m) of the
perturbation.
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Alp Defining a unified scaling parameter.

> In 3D the properties of the rise of the magnetic flux tube do
not scale with the magnetic Rossby numbers, so we had to
define a more general scaling parameter. We call it I',,:

(va)® ()"

T, =
¢ w g

» Where « depends on the azimuthal wavenumber (m) of the
perturbation.

» In the case of m=0 — a=1:

VA
w o

Ro*

m

I =
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AIP  There is no difference between 2D and 3D.

» Not the geometry, but the azimuthal wavenumber (m) of the
perturbation.

» 2D: m=0 — axisymmetric rise.
» 3D: m>0 — non-axisymmetric rise.

Three series One scaling Three «:
> m = O » 1
> m=4 ro_ ()% (e) " > 0.92
> m=8 ety > 0.85

> « is a function of the azimuthal wavenumber of the perturbation

Y. Fournier
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AP What do we learn about such a relation?

» The regime of the rise is driven by I',

» We learn that it is possible to compare our
simulations with stellar objects.

» Even though the numerical parameter space is far
away from the realistic one, I',, drives the regime,
hence a simulation with the solar I', can be
compared with the sun.
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AP What do we learn about such a relation?

» The regime of the rise is driven by I',

» We learn that it is possible to compare our
simulations with stellar objects.

» Even though the numerical parameter space is far
away from the realistic one, I',, drives the regime,
hence a simulation with the solar I', can be
compared with the sun.

» And what about the dynamo?
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Al Application: the Babcock-Leighton dynamo

» The BL-Dynamo needs a mechanism
to transport magnetic flux from the
bottom of the CZ to the surface. The
traditional mechanism is magnetic
buoyancy under the form of flux tubes.

> Usually people consider the rise to be
instantaneous. s it really?

Polar axis

» From our simulations we can constrain
the rise.

Equatorial plane

Figure : A sketch of the Babcock-Leighton
dynamo mechanism. Picture from
Charbonneau (2010).
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Alr  Evolution of the relative rising time with I',

» For an azimuthal wavenumber m = 8

_ 117
Trise ¢ (L0.85)
1 L
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log(lo.5) = — log (("/;3/2)“'125 Mm‘_)

Y. Fournier ) Scaling relation for rising flux tubes



N
g Future work: implementing a delayed
alP - BL-dynamo (testing phase)

» In a similar manner than Jouve et al. (2010) we are
introduced a delay in the a-effect.

» From our results we can constrain the delay (for m=8):

70 . 0.17 AB¢> -
= 0) (Mot —
B <7_diﬂ> sin(6) ( t.) ( Bog

» We want to study the possible limit of the BL-Dynamo.
Fast rotating stars has:

» shorter cycles
> longer rising time
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N
g Future work: implementing a delayed
alP - BL-dynamo (testing phase)

» In a similar manner than Jouve et al. (2010) we are
introduced a delay in the a-effect.

» From our results we can constrain the delay (for m=8):

70 . 0.17 AB¢> -
= 0) (Mot —
B <7_diﬂ> sin(6) ( t.) < Bog

» We want to study the possible limit of the BL-Dynamo.
Fast rotating stars has:

» shorter cycles
> longer rising time

» What would happen if the rising time becomes of the same
order of magnitude than the cycle?

Y. Fournier ) Scaling relation for rising flux tubes



I
Alr Discussion and Conclusion
> We conduct numerical experiments of compressible magnetic flux
tubes, which were able to reproduce results found in the literature.
» In 3D, the setup scales in a different manner than in 2D.
» We designed a general scaling parameter unifying former and
current results: -
(va)® (es)
ZUQO

T, =

» The setup scales. Therefore, even though the numerical domain is
different from the realistic one, the simulations are in the solar
regime.

» We could compute the rising time scale needed to constrain the
BL-dynamo.

> We include this rising time as a delay in the « effect for a
BL-dynamo.
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