EXPLAINING JUPITER'S INTERNAL DYNAMICS

Thomas GASTINE¹, Johannes WICHT¹, Moritz HEIMPEL², Lúcia DUARTE³ and Andreas BECKER⁴

¹ Max Planck Institute for Solar System Research, Göttingen, Germany
 ² University of Alberta, Edmonton, Canada
 ³ University of Exeter, UK
 ⁴ University of Rostock, Germany

May 28, 2015

Results

Internal dynamics: zonal flows

Zonal winds

Jupiter and Saturn: banded structures associated with prograde and retrograde zonal flows = east-west flows independent of the longitude ϕ

Jupiter's zonal flows

- Large amplitude prograde equatorial jet ($\sim 150 \text{ m.s}^{-1}$)
- Flanked by multiple alternating zonal winds ($\sim 10 \text{ m.s}^{-1}$)
- Alternating pattern up to the polar regions
- How deep they are?

Internal dynamics: magnetic field

- Flybys by Voyager, Pioneer + Galileo: magnetic field up to $\ell_{max} = 4$
- \blacksquare Tilted dipole with $\Theta_d \sim 10^\circ$
- Similar to the geodynamo?

Is the geodynamo suitable to describe the Jovian field?

- Rapidly-rotating planet: columnar convection
- Curvature, density contrast: helical flow= dynamo-capable
- Earth-like if zonal winds don't couple
- Is it the correct picture of the Jovian dynamo?

Goals of this work

Open questions

- Zonal flows: how deep they are?
- "Decoupled dynamics": is it the correct picture of the jovian dynamo?
- So far, geodynamo-based models (Boussinesq): is it applicable to giant planets (variable transport properties)?

Goal: towards more realistic models of giant planets

- Integrated coupled global models as realistic as possible (Juno mission) = variable electrical conductivity
- 2 New generation of global models is required!

Developing a new generation of planetary dynamo models

Numerical developments

- 1 Transformation of a Boussinesq code into an anelastic code: fast acoustic waves are filtered out but density stratification effects are allowed
- Validation of the numerical devs by an international Benchmark (Jones *et al.* 2011)

Numerical method

- Anelastic approximation: $\nabla \cdot \tilde{\rho} \mathbf{u} = \mathbf{0}$
- 3-D numerical simulations in rotating spherical shells: hydro and MHD
- Pseudo-spectral code: spherical harmonic decomposition

Parameter	Earth	Giant planets	Numerical model
E (Visc./Coriolis)	10 ⁻¹⁵	10 ⁻¹⁸	10 ⁻⁵
<i>Ra</i> (Buoyancy/Diff.)	10 ²⁷	10 ³⁰	$5 imes 10^9$
Pr	0.1	0.1 - 1	1
<i>Pm</i> (visc/magn diff.)	10^{-6}	10^{-7}	0.6
$N_{ ho}$	0.2	8	5
Λ (Lorentz/Coriolis) <i>Rm</i> (ind./diff.)	1 1000	<mark>1</mark> 10 ⁵ – 10 ⁶	1 200
····· (200

- Most of the control parameters are under/over-estimated by many orders of magnitude
- Parameter studies (e.g. Duarte et al. 2013)

/17

Realistic interior model

• $\tilde{
ho}
ightarrow$ from $r = 0.2 R_J$ to $r = 0.99 R_J$

 $\blacksquare~\tilde{\sigma} \rightarrow$ constant in the metallic region + exponential decay

Analyzing dynamo action

/17

Interface dynamics $(r = 0.87 R_J) \rightarrow$ magnetic banding

Deep-seated columns \rightarrow dipolar component of the field Interface shear $\rightarrow \Omega$ -effect \rightarrow equatorial magnetic bands

Explaining Jupiter's internal dynamics

Global dynamics

 u_r, u_ϕ

¹³/17

Surface magnetic field

- \blacksquare Good agreement with VIP4 ($\ell \leq$ 4)
- \blacksquare All the morphology is essentially captured for $\ell \leq 15$

Spectra and Juno mission

- Match the known spectra
- Prediction for Juno: possible detection threshold at $\ell_{max} = 16$

Time variation of the surface field

Time variation of the surface field

Time variation of the surface field

Conclusion

Earth-like? Insulated molecular envelope Inner core Conducting metallic hydrogen

Conclusion

Coupled dynamics

Thank you for your attention