Dynamo-action in massive stars: from the PMS to the TAMS

A.F. Kholtygin¹, A.S.Medvedev¹, S.Hubrig² ¹Saint-Petersburg University, Russia ²AIP, Potsdam, Germany

Stellar and planetary dynamos Göttingen, Germany, May 26-29, 2015

Observations of circular polarization give only values of B_1 . These values strongly depends on the rotational phase and can not be used for the statistical analysis.

We use 3 characteristic of magnetic field weakly depending on the dates of observations

$$\langle B \rangle = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (B_l^i)^2}$$

RMS magnetic field

Statistical investigation is the key of understanding the nature of the OB stars magnetic field

$$\sigma_{\rm B} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (B_{l}^{i})^{2}}$$

Mean error of the magnetic field

$$\chi^{2}/n = \frac{1}{n} \sum_{i=1}^{n} \frac{(B_{l}^{i})^{2}}{(\sigma_{B^{i}})^{2}}$$

reduced χ^2 statistics

|B| >3 σ_B for at least one measurement

$$\begin{cases} \langle B \rangle > 2 \sigma_{B}, \\ \chi^{2} / n > 1 \end{cases}$$

Criteria of real measurements

CPD-28 2561: $\langle B \rangle$ = 239 Γc , σ_B = 93 Γc , $\chi^2/n = 5$

Sources of the magnetic field data

O star observations with FORS and HARPS: MAGORI PROJECT

Aims:

To investigate statistically whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment.

Telescopes and Spectrographs VLT, 8-m Antu + 3.6 m ESO FORS2+HARPS, NOT

Results for OB stars: In 2011 + 2013 65 stars > 100 spectra. Magnetic field at 3 σ level was detected for 14 O stars, including two Of?p stars.

Project MIMES: Magnetism in Massive Stars

Head of the Project: Gregg Wade, Canada

Magnetic field distribution for O stars

Magnetic field distribution for BA stars: first glance

distribution for **B** (empty) and A (filled) symbols accordingly. Power approximation is shown with a dashed line. Pentagons mark data in the region $\langle {
m B}
angle$ < 300 G.

Magnetic field distribution for BA stars: the second view

There is NO of the magnetic desert

From Magnetic Fields to Magnetic fluxes

Magnetic pseudo-fluxes of massive stars

$$F = R_*^2 \int_{-\pi}^{\pi} \int_{0}^{2\pi} |B_r| \sin\theta d\theta d\varphi$$

$$F \approx 4\pi \langle B \rangle R_*^2$$

Magnetic pseudo-flux distribution for massive OB stars WR stars, pulsars and magnetars

Stages of evolution, about which we know the typical values of the magnetic field are marked

The general scheme of the magnetic field generation for massive stars

Our new population synthesis code

We create an ensemble of massive stars on the main sequence in order to obtain mass, age, radius distributions of these stars based on the **AMUSE** platform

Initial distribution of
magnetic fluxes
$$f(\Phi_0) = \frac{1}{\Phi_0 \sqrt{4\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{\log \Phi_0 - \langle \log \Phi_0 \rangle}{\sigma}\right)^2\right\}$$
Magnetic flux
evolution $\Phi_i = \Phi_{0,i}e^{-\tau_i/\tau_d}$ τ_d is the dissipation
parameter. $\tau_i = t/\tau_{MS}$ Magnetic flux and
rms magnetic field $B_{rms} = \frac{\Phi_i}{4\pi R_i^2}$ Also we introduce a threshold
value of the magnetic field $B_{min} \sim$
300 G (Auriere et al. 2007) as an
optional parameter.

Dissipation parameter derived from observations is about 0.1
In that case a magnetic field distribution would be highly asymmetric.
Observational data is incomplete, more data is needed

 $f_1 = N_{magn}/N_{nomagn}$ (at ZAMS) $f_2 = N_{magn}/N_{nomagn}$ (at the present time)

Common distribution function for AB stars

 $f_1 = 30\%$ $f_2 = 10\%$

It means that 2/3 of AB are nonmagnetic at ZAMS

Distribution function for OB stars

Fraction of magnetic stars is significantly higher if we assume that Bth = 300 G. Then if $f_1 = 90\% => f_2 = 30\%$

Evolution of the magnetic fields and magnetic fluxes for stars with masses in the interval [3,4] solar masses

What happens before ZAMS

Toy model of the magnetic field and magnetic flux generation by dynamo-action

•All stars have the equal initial magnetic flux F_0 •Magnetic field is generated during the N cycles • $B_{fin} = B_0^* \alpha_1^* \alpha_2^* \dots \alpha_N$ • α_i – is the uniformly distributed random variable in an interval [a,b] •Magnetic flux $F_i = 4\pi R_i^2 B_i$, R_i is the stellar radius at the cycle i, • $F_{fin} = F_0^* \beta_1^* \beta_2^* \dots \beta_N$, where $\beta_{i+1} = \beta i^* (\alpha_{i+1} / \alpha_i)^* (R_{i+1} / R_i)^2$ • $F_0 = B_0^* 4\pi R_0^2$

Parameters of the model: B_0 (or F_0), R_0 , a, b, N

Parameters of the model: $\log F_0 = 1.5 \times 10^{24} \text{ G} \times \text{cm}^2$, a = 1.0, b = 1.85, N = 20

Conclusions

- 1. The magnetic desert for **OBA** does not exist.
- 2. We create a model which can describe the real distribution of massive star magnetic fields
- Initial fraction (at ZAMS) of magnetic OB stars can be in the range from 30% to 90%
- 4. The question remains why only a small fraction of **OB** stars are magnetic remains unanswered