Solar turbulent convection at supergranulation scale

Jan Langfellner (PhD student)
Laurent Gizon (main adviser)
Aaron Birch
Supergranulation: effect of rotation

- Known non-zero correlation $\langle \text{div}_h \text{curl}_z \rangle$ in supergranular flows
 \Rightarrow net kinetic helicity

- Due to Coriolis force acting on convective flows

- How does the vorticity look in detail?
 \Rightarrow Map it
 (BUT: net vorticity \Rightarrow average supergranule)

Gizon & Duvall 2003
(Using time-distance helioseismology in MDI Dopplergrams)
Outline

• Map different quantities in the average supergranule

• Map vorticity using:
 ▫ Time-distance helioseismology
 ▫ Local correlation tracking (LCT) of granules

• Map magnetic field
 (advected by supergranular flows)
 ➔ network magnetic field

• Map line-of-sight velocity (Dopplergrams)
 ➔ vertical velocity component
Cross-correlate Doppler velocities at r_1 and r_2
Wave travel times are affected by flows
Waves travel faster along the flow than against the flow: $\tau_{\text{diff}} = \tau_+ - \tau_-$
How to measure div_h and curl_z

Divergence-sensitive travel times

τ^{oi}

“outward − inward”

Vorticity-sensitive travel times

τ^{ac}

“anti-clockwise − clockwise”

Duvall et al. 1996

How to measure div_h and curl_z

Divergence-sensitive travel times

τ^{oi}

“outward _ inward”

Duvall et al. 1996

Vorticity-sensitive travel times

τ^{ac}

“anti-clockwise _ clockwise”

How to measure div_h and curl_z

Divergence-sensitive travel times

Vorticity-sensitive travel times

τ^{oi}

τ^{ac}

“outward” – “anti-clockwise”

“inward” – “clockwise”

→ Use SDO/HMI Dopplergrams (patches ~180x180 Mm2)

Duvall et al. 1996

Example travel-time maps

Divergence-sensitive travel times
\(\tau^{oi} \)

Vorticity-sensitive travel times
\(\tau^{ac} \)

\(40^\circ \)

f modes
8h

\(\tau^{oi} \)

\(\tau^{ac} \)
Example travel-time maps

Divergence-sensitive travel times

Vorticity-sensitive travel times

\(\tau^{oi} \)

\(\tau^{ac} \)

Find positions of supergranules
The average supergranule

• Shift maps so supergranules are on top of each other
• Average over ~3,000 supergranules (many maps)

At 40° solar latitude
The average supergranule

• Shift maps so supergranules are on top of each other
• Average over ~3,000 supergranules (many maps)

At 40° solar latitude
The average supergranule

- Shift maps so supergranules are on top of each other
- Average over ~3,000 supergranules (many maps)

At 40° solar latitude

Convert into velocities v^{ac}
The average supergranule

- Shift maps so supergranules are on top of each other
- Average over ~3,000 supergranules (many maps)

Convert into velocities v^{ac}
Local correlation tracking (LCT)

- Granules get advected by larger-scale flows
 - Use granules as tracers of supergranule motions

- Cross-correlate image parts at times t and $t + \Delta t$
 - get shift Δx
 - get velocity $v_x = \frac{\Delta x}{\Delta t}$

→ velocity maps v_x, v_y
Local correlation tracking (LCT)

- Granules get advected by larger-scale flows
 → Use granules as tracers of supergranule motions

- Cross-correlate image parts at times t and $t + \Delta t$
 → get shift Δx
 → get velocity $v_x = \frac{\Delta x}{\Delta t}$

→ velocity maps v_x, v_y
Local correlation tracking (LCT)

- Granules get advected by larger-scale flows
 → Use granules as tracers of supergranule motions

- Cross-correlate image parts at times \(t \) and \(t + \Delta t \)
 → get shift \(\Delta x \)
 → get velocity \(v_x = \frac{\Delta x}{\Delta t} \)

→ velocity maps \(v_x, v_y \)
Local correlation tracking (LCT)

- Granules get advected by larger-scale flows
 - Use granules as tracers of supergranule motions

- Cross-correlate image parts at times t and $t + \Delta t$

 \Rightarrow get shift Δx

 \Rightarrow get velocity $v_x = \frac{\Delta x}{\Delta t}$

\Rightarrow velocity maps v_x, v_y
Comparison: Time-distance vs. LCT

Time-distance (f mode)

LCT

40° outflow
Comparison: Time-distance vs. LCT

Time-distance (f mode)

LCT

-40° outflow
Comparison: Time-distance vs. LCT

Time-distance (f mode)

\[\theta^o \]
outflow

LCT

\[v^{ac} \text{[ms}^{-1}] \]

\[y \text{[Mm]} \]

\[x \text{[Mm]} \]

\[v^{ac} \text{[ms}^{-1}] \]

\[y \text{[Mm]} \]

\[x \text{[Mm]} \]
LCT: Spatially resolved curl_z

outflow

40°

inflow

Langfellner et al., A&A, 2015a submitted
LCT: Spatially resolved curl_z

outflow

-40°

inflow
LCT: Spatially resolved curl_z

outflow \circ inflow
Line-of-sight magnetic field (SDO/HMI)

Langfellner et al., A&A, 2015b submitted
Magnetic field: anisotropy

outflow

0°

\begin{align*}
B & \text{ [Gauss]} \\
\psi & \text{ [deg]} \\
x & \text{ [Mm]} \\
\langle B_{\text{LOS}} \rangle_{\text{ring}} & \text{ [G]}
\end{align*}
Line-of-sight velocity (SDO/HMI)

outflow \hspace{2cm} 0^\circ \hspace{2cm} \text{inflow}
Line-of-sight velocity: anisotropy

outflow

\[V_{\text{Los}} [\text{ms}^{-1}] \]

\[x [\text{Mm}] \]

\[\langle V_{\text{Los}} \rangle \text{ring} [\text{ms}^{-1}] \]

\[\psi [\text{deg}] \]
Summary

- Circular velocity of the average supergranule mapped with time-distance and LCT → excellent agreement

- \(\text{curl}_z \) structure different for outflows and inflows (broad and weak vs. narrow and strong)

- Network magnetic field around average supergranule is anisotropic (stronger in the west)

- Anisotropy also seems to appear in line-of-sight velocity