PROPAGATION AND REFLECTION OF
TORSIONAL WAVES IN SPHERICAL BODIES
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In the presence of a background magnetic field, a conducting fluid can sustain
magneto-hydrodynamic waves, known as Alfvén waves. In rapidly rotating
axisymmetric bodies the dominance of geostrophic effects gives rise to torsional
waves (TW). These are axisymmetric oscillations of the azimuthal velocity and
magnetic field whose restoring force is set by a background magnetic field
perpendicular to the rotation axis. Both the background field and the wave
amplitude are function of the cylindrical radius s only. On Earth, the detection of
the fundamental period of the TW may provide a direct way to assess the shape

and the magnitude of the background magnetic field.

Attempts in detecting TW from observations (Hide et al., 2000 and Gillet et al.,
2010) suggest the absence of reflections at both the Core Mantle Boundary (CMB)

and the rotation axis, a feature that has not yet been explained.

Maffei, S. and Jackson, A.

3 mT in the interior of the liquid core.

In particular Gillet et al., 2010 detected axisymmetric oscillations with periodicity
of 6 to 8 years, amplitudes of 0.4 Km yr! and travelling from the Inner Core
Boundary to the (CMB) in 4 years. TW theory predicts a background field as big as

Here we want to study the propagation of TW in spherical domains, paying
particular attention to the reflections and boundary conditions.

We will study normal modes and the propagation of an initially concentrated
pulse across the domain with different background fields, as also done in Cox et
al., 2013. We then illustrate how the WKBJ approximation could be used to derive
the reflection coefficients at the boundaries. We apply this technique to the case
of a newly derived closed form solution to the TW equation.
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Figure 1: (left) From Roberts and
Aurnou, 2012: schematics of
TWs in the core. (right) From
Gillet et al, 2010: TW time
evolution derived from the data.

Blue and red are negative and
positive angular velocities.

2. Normal modes 4. WKBJ approximation

We solve the diffusion-free TW normal mode equation using
the finite element solver Comsol
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Here s is the cylindrical radius and the boundary conditions

for the full sphere are:

* Regularity condition at s=0: C"s:() =0
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Figure 2: Eigenmodes and eigenperiods calculated for a
constant (left) and what we will call the Jacobi (right) Alfven
velocity profiles. The dotted line is the Alfven velocity.

Oblate spheroidal wave
functions
(Roberts and Aurnou, 2012)

. The travel time is always slightly shorter than the first
eigenperiod

. The Jacobi field solutions satisfy insulating BCs even if
the derivative is non-zero at the equator

Next, we integrate the diffusion-free TW wave equation
forward in time using the finite element solver Comsol (low
order BDF method)
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We obtain the same result by projecting the initial condition
on the normal modes basis and evolving them in time
according to their eigenfrequencies.
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Figure 3: Time evolution of azimuthal velocity from a puise
initially focalized in s=0.5 for a constant (left) and Jacobi
(right) Alfvén velocity.

. The pseudo-reflection at the rotation axis is similar in
both cases, as the Alfvén velocity has to satisfy the same
regularity condition

. The reflection at the equator depends on the value of
the Alfvén velocity there
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5. Reflections

If we consider the temporal dependence in the WKBJ
solution, we can study reflections of wave-like solutions. The
matching with the boundary solutions gives imaginary
reflection coefficients that we can express in terms of phase
shifts. For the Jacobi solution:
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Rotation axis (s=0) Ay = 7§7r frequency independent

Equator (s=1) Apy = 27w + 7 frequency dependent
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Figure 6: Predicted and true reflections at the rotation axis
(left) and equator (right) for the Jacobi velocity profile and an
initial condition enriched in high frequencies and centred on

5=0.5 (left) and s=0 (right). First reflection only.

It is possible to approximate both the normal mode solution
and a propagating wave with a first order WKBJ expansion
(Bender and Orszag, 1999)

CwkBy(s,t) = explwSo(s) + Si(s) — iwt]
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The approximation is valid in the interior of the domain: it
comprises an oscillatory part and a modulation.
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Figure 4: Modulating factor in the WKBJ expansion (green
dashed line) for the Jacobi field compared to successive
snapshots from Figure 3, before the first reflections. The

initial condition is the black dashed-dotted line.

To have a solution valid in the whole domain we need to
calculate boundary solutions to the TW:
G

» (11 : boundary solution valid for (1-s)<<1

: boundary solution valid for s<<1

The matching of the WKBJ solution with these boundary
solutions gives the approximated eigenmodes and
eigenfrequencies
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Figure 5: (left) true eigenfrequencies compared with the
WHKBJ approximation for the Jacobi field. Note that the error
is less than 21 % even for the first mode. (right) sixth Jacobi
eigenmode compared with the WKBJ approximation and the
boundary solutions.
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6. Conclusions

We present a new analytical solution, in terms of Jacobi
polynomials, for the TW problem in a full sphere with vanishing
Alfvén velocity at the equatorial boundary. We propose a
method based on the WKBJ approximation to get analytic
insights on the TW eigenmodes and reflections at the
boundaries. We applied this method on the Jacobi solution. The
reflection coefficients at both boundaries are imaginary. At the
rotation axis a frequency independent phase shift is introduced
that resembles the phase shift introduced on a seismic wave
passing trough a caustic (Chapman, 2004) and corresponds to
the action of a Hilbert transform on the incoming wave. At the
equatorial boundary the phase shift is frequency dependent.

Given the regularity condition on the Alfvén velocity at the
rotation axis, we expect the results derived here to be of
general character, that is, they can be applied to other velocity
profiles. The reflection at the equatorial boundary, however,
strongly depends on the velocity field.

Gillet et al., 2010 commented that absence of reflections could
be explained by strong gradient in the Alfvén velocity next to
the boundaries or by finite conductivity at the CMB, which
would result in introducing diffusivity in the TW equation. Since
we find non-zero reflections even for high gradients velocity
profiles, the absence of reflections could be explained
considering finite CMB conductivity.
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