Dipolar dynamos in stratified systems

Raphaël Raynaud, Ludovic Petitdemange, Emmanuel Dormy

LRA-LERMA ÉCOLE NORMALE SUPÉRIEURE

Stellar and Planetary Dynamos Göttingen – May 27, 2015

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Table of contents

2 Modelling

- Governing equations
- Set up
- Methods

3 Axial dipoles

4 Conclusion

Axial dipoles

Conclusion

Different magnetospheric configurations

Axisymmetric (m = 0) and non-axisymmetric (m = 1) configurations

Table of contents

2 Modelling

- Governing equations
- Set up
- Methods

3 Axial dipoles

4 Conclusion

Governing equations

How to model the fluid flow ?

The Convective Approximations

- retain the essential physics with a minimum complexity
- filter out sound waves

The Boussinesq Approximation

 $\nabla \cdot (\mathbf{u}) = 0$

The Anelastic Approximation

$$\nabla \cdot (\overline{\rho_a} \mathbf{u}) = 0$$

Governing equations

How to model the fluid flow ?

The Convective Approximations

- retain the essential physics with a minimum complexity
- filter out sound waves

The Boussinesq Approximation

 $\nabla \cdot (\mathbf{u}) = 0$

The Anelastic Approximation

 $\nabla \cdot (\overline{\rho_a} \mathbf{u}) = 0$

The Boussinesq benchmark

(Christensen et al. 2001)

• homogeneous mass distribution

 $g \propto r$

The anelastic benchmark

(Jones et al. 2011)

central mass distribution

$$g \propto 1/r^2$$

Intr	0	du	oti	n
	U.	uu	οu	υH

Modelling ○●○○○○ Axial dipoles

Conclusion

Governing equations

The anelastic approximation

Polytropic reference state adiabatically stratified

$$T_a = w(r), \qquad \rho_a = w^n, \qquad P_a = w^{n+1} \tag{1}$$

Resulting system

$$\nabla \cdot (\rho_a \mathbf{V}) = 0 \tag{2}$$

$$D_t \mathbf{V} = -\nabla \left(\frac{P_c}{\rho_a}\right) - \alpha^S S_c \mathbf{g} + \mathbf{F}^{\nu} / \rho_a \tag{3}$$

$$\rho_a D_t S_c + \nabla \cdot \left(\frac{\mathbf{I}^q}{T_a}\right) = \frac{Q}{T_a} + \mathbf{I}^q \cdot \nabla T_a^{-1} \tag{4}$$

with $\begin{cases} \mathbf{F}^{\nu} & \text{viscous force} \\ Q & \text{viscous heating} \\ \mathbf{I}^{q} & \text{heat flux} \end{cases}$

In	ŧ٣	0	Ы		oti	0	n
	u.	U	u	u	ωu	U	

Modelling ○○●○○○ Axial dipoles

Conclusion

Governing equations

Mean field approach for the heat transfer equation

Solve the equation for average quantities

$$f = \langle f \rangle + f^t \tag{5}$$

Turbulent fluctuations create an entropy flux term

$$\mathbf{I}^{St} = \rho_a \langle S^t \mathbf{V}^t \rangle \propto \nabla \langle S \rangle \tag{6}$$

Strong simplification

- the usual molecular term $\mathbf{I}^q = -k\nabla T$ is then neglected in the heat transfer equation
- \implies temperature is removed from the problem !

Drawbacks

- argument only valid far from the onset of convection
- P2 of thermodynamics not under warranty anymore

Modelling 000●00

Axial dipoles

Governing equations

MHD equations

Dimensionless system

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = Pm \left[-\frac{1}{E} \nabla \frac{P'}{w^n} + \frac{Pm}{Pr} Ra \frac{S}{r^2} \mathbf{e}_r - \frac{2}{E} \mathbf{e}_z \times \mathbf{v} + \mathbf{F}^v + \frac{1}{E w^n} (\nabla \times \mathbf{B}) \times \mathbf{B} \right],$$
(7)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla^2 \mathbf{B}, \qquad (8)$$

$$\frac{\partial S}{\partial t} + \mathbf{v} \cdot \nabla S = w^{-n-1} \frac{Pm}{Pr} \nabla \cdot \left(w^{n+1} \nabla S \right) + \frac{Di}{Pr} \left[F^{-1} w^{-n} (\nabla \times \mathbf{B})^2 + O^{\nu} \right]$$
(9)

$$= 0$$
(10)

$$\nabla \cdot (w^n \mathbf{v}) = 0, \qquad (10)$$
$$\nabla \cdot \mathbf{B} = 0. \qquad (11)$$

Set up

A simplified model

Set up

- A perfect gas in a rotating spherical shell with constant
 - ★ kinematic viscosity v
 - \star turbulent entropy diffusivity κ
 - \star magnetic diffusivity η
- Convection is driven by an imposed entropy difference ΔS between the inner and outer spheres

Boundary conditions

- fixed entropy
- stress-free b. c. for the velocity field
- insulating b. c. for the magnetic field

Methods

Systematic parameter study (~ 250 models)

Seven control parameters			
Rayleigh number	Ra	$\frac{GMd\Delta S}{\nu\kappa c_p}$	$O(10^{6})$
magnetic Prandtl number	Рm	$ u/\eta$	$\mathcal{O}(1)$
Prandtl number	Pr	v/κ	1
Ekman number	Ε	$v/(\Omega d^2)$	10^{-4}
aspect ratio	χ	r_i/r_o	0.35
polytropic index	п	$1/(\gamma - 1)$	2
number of density scale heights	$N_{ ho}$	$\ln(arrho_i/arrho_o)$	≤3
	-		

The anelastic version of PaRoDy reproduces the anelastic dynamo benchmark (Jones et al. 2011).

Table of contents

Introduction

2 Modelling

- Governing equations
- Set up
- Methods

3 Axial dipoles

Conclusion

Axial dipoles

$$\left(N_{\varrho}=0.1\right)$$

Dipolar dynamos as a function of Ra/Ra_c and Pm

Axial dipoles

$$N_{\varrho} = 0.5$$

Dipolar dynamos as a function of Ra/Ra_c and Pm

Axial dipoles

$$N_{\varrho} = 1.5$$

Dipolar dynamos as a function of Ra/Ra_c and Pm

Axial dipoles

$$N_{\varrho} = 2.0$$

Dipolar dynamos as a function of Ra/Ra_c and Pm

Axial dipoles

$$\left(N_{\varrho}=2.5\right)$$

Dipolar dynamos as a function of Ra/Ra_c and Pm

Axial dipoles

Conclusion

Critical magnetic Reynolds number

$$\left\{ \forall N_{\varrho}, \quad Rm_{\rm c} \sim 10^2 \right\}$$

Axial dipoles

Role of inertia: local Rossby number

 $N_{
m
ho} = 0.5$

Axial dipoles

Role of inertia: local Rossby number

0.6 $f_{d\mu_{w}}$ 0.4 • 26 B 0.12 Ro

 $N_{0} = 0.5$

$$N_{\varrho} = 1.5$$

$$N_{\varrho} = 2.0$$

r

 $Ro_{\ell} = Ro_{c} \ell_{c} / \pi$

as a function of radius for dipolar (solid lines) and multipolar (dashed lines) dynamos at $(N_{\rho} = 2.5, Pm = 2)$ (thin lines) and $(N_{\rho} = 3, Pm = 4)$ (thick lines).

1.4

1.6

Introduction	Modelling 000000	Axial dipoles	Conclusion
Snapshots			
	$N_{ m ho} = 1.5, Pm = 0.75, Ra/Ra_{ m C} = 5$	$N_{\rho} = 2.5, Pm = 2, R$	Ra/ <i>Ra</i> c = 3.4

-2.40

-0.40-0.32-0.24-0.16-0.08	0.00	0.08	0.16	0.24	0.32	0.40

 B_r

 B_r

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0

 $B_r(r=r_o)$

5

Table of contents

1 Introduction

2 Modelling

- Governing equations
- Set up
- Methods

3 Axial dipoles

Results

- Dipolar solutions can be observed at high N_{ϱ} , provided high enough Pm are considered.
- The critical *Rm* of the dipolar branch seems scarcely affected by the increase of *N_ρ*.
- The higher N_{ρ} , the faster is reached the critical Ro_{ℓ} above which inertia causes the collapse of the dipole. This explains why dipolar dynamos become confined in the parameter space.
- The scarcity of dipolar solutions for substantial N_{ρ} would thus rather come from the restriction of the parameter space being currently explored (because of computational limitations), rather than an intrinsic modification of the dynamo mechanisms.

References

- Schrinner, Petitdemange, Raynaud & Dormy, 2014, A&A, 564, A78
- Raynaud, Petitdemange & Dormy, 2014, A&A, 567, A107
- Raynaud, Petitdemange & Dormy, 2015, MNRAS, 448:2055–2065