THE UNDERSTANDING THE EQUATORWARD MIGRATION OF THE SUN'S MAGNETIC FIELD

> JÖRN WARNECKE Max Planck Institute For Solar System Research

Axel Brandenburg, Nordita Petri J. Käpylä, Helsinki University Maarit J. Käpylä, Aalto University

DAILY SUNSPOT AREA AVER

Global convective dynamo simulations

$$\begin{aligned} \frac{\partial A}{\partial t} &= u \times B + \eta \nabla^2 A \\ \frac{D \ln \rho}{D t} &= -\nabla \cdot u \\ \frac{D u}{D t} &= g - 2\Omega_0 \times u + \frac{1}{\rho} \left(J \times B - \nabla p + \nabla \cdot 2\nu \rho S \right) \\ T \frac{D s}{D t} &= \frac{1}{\rho} \nabla \cdot \left(K \nabla T + \chi_t \rho T \nabla s \right) + 2\nu S^2 + \frac{\mu_0 \eta}{\rho} J^2 - \Gamma_{\text{cool}}(r), \end{aligned}$$

- high-order finite-difference code
- scales up efficiently to over 60.000 cores
- compressible MHD

Global convective dynamo simulations

 $0.7R < r < R \qquad \quad \theta_1 < \theta < \theta_2 \qquad \quad 0 < \phi < \Delta \phi \qquad k_{\rm f} = 2\pi/\Delta R$

We model a spherical sector (`wedge') where only parts of the latitudinal and longitudinal extents are taken into account.

Normal field condition for B at the outer radial boundary and perfect conductor at all other boundaries. Impenetrable stress-free boundaries on all boundaries.

29th of June 2015

Equatorward Migration I

29th of June 2015

Equatorward Migration II

Differential rotation

Parker-Yoshimura-Rule

Propagation direction of mean toroidal magnetic field can be entirely explain by the Parker—Yoshimura—Rule (Warnecke et al. 2014, 2015a)

Test-field method

Determine the turbulent transport coefficients from global convective simulations

Schrinner et al. 2005, 2007

$\overline{\mathcal{E}} = \overline{u' \times b'} = \alpha \overline{B} + \gamma \times \overline{B} + \beta \nabla \times \overline{B} + \delta \times (\nabla \times \overline{B}) + \kappa \nabla \overline{B}$

Solving 27 equations for b', with 27 independent test-fields

Test-field method vs. Singular value decomposition (SVD) $\overline{\mathcal{E}} = \overline{u' \times b'} = \alpha \overline{B} + \gamma \times \overline{B} + \underline{\beta} \nabla \times \overline{B} + \underline{\delta} \times (\nabla \times \overline{B}) + \kappa \nabla \overline{B}$ (Racine et al. 2011, Augustson et al. 2014)

Parker Wave ?

Conclusions

- Equatorward propagation in simulation are related to the negative shear.
- Migration of mean magnetic field can be entirely explained by an alpha-omega-dynamo wave
- Parker-Yoshimura-Rule works!
- Test-field results for solar dynamo simulations.
- Fluctuations correlate with the magnetic cycle.
- SVD does not agree with test-field results.

Please give back your badges before you leave!

